ABSTRACT
Bereaved adolescents (N = 90) who had experienced relatively common death losses (e.g., grandparent, friend) completed the Texas Revised Inventory of Grief and the Emotional Closeness Scale and Continuum. Results indicated that present grief was significantly higher for friend than for grandparent death loss. A MANOVA revealed that those in the high closeness group reported significantly higher mean scores on past and present grief than those in the low closeness group. Finally, in a hierarchical multiple regression, after demographic variables were entered (e.g., age, present at death), emotional closeness added significant variance to the prediction of past and present grief. This research contributes to the understanding of grief intensity following adolescents’ most common death losses and highlights the importance of counselors’ intentionally and directly assessing bereaved adolescents’ perceived emotional closeness to the deceased as part of grief-related counseling.

Because the bulk of the adolescent grief literature has focused on parent or sibling death (e.g., Balk, 1990; Dillon & Brassard, 1999; Fanos & Nickerson, 1991; Martinson & Campos, 1991; Worden & Silverman, 1996), little is known about the grief associated with the death losses of extended family members and peers or

*This research was supported in part by a seed grant from Radford University, Radford, Virginia.
friends. Nonetheless, grandparent and peer are the more common death losses during adolescence (Balk & Corr, 1996; Crenshaw, 1990; Oltjenbruns, 1996; Schachter, 1991-1992). For instance, grandparent death is often the first death that an adolescent experiences (Glass, 1990); and in one study (Ringler & Hayden, 2000), 26 adolescents had lost a grandparent, 37 had lost a friend, and 14 had lost a grandparent and a friend; only 3 participants had lost a sibling, and none had lost a parent.

Adolescent family and friend death losses are important because they are common and because they are distressing. The responses to grandparent death can be similar to the struggles associated with parent or sibling death loss (Irizarry, 1992; Wass, 1995), and friend death loss often results in a more profound grief than might have been predicted (Dyregrov, Gjestad, Bie Wikander, & Vigerust, 1999; Schachter, 1991-1992; Sklar & Hartley, 1990). Examining adolescent family and friend death loss, Lurie (1993) concluded that “the loss of a close friend precipitates a grief reaction similar to that of the loss of a close family member” (p. 203). Similarly, Ringler and Hayden (2000) concluded that adolescents are “often deeply affected” (p. 227) by family and friend death loss. If practitioners are to provide effective, useful services to bereaved adolescents, research on the most common death loss experiences is mandatory. This study examined grief intensity following family kin (e.g., grandparent) and friend death loss.

Grief Intensity Perspectives—Evolutionary Salience and Emotional Closeness

Evolutionary salience and emotional closeness are two interesting perspectives that may account for adolescents’ grief intensity following kinship or friend death loss. From the perspective of modern evolution theory, in natural selection, “the genes and behavior that enhance reproductive success are selected for, not the genes and behavior that promote survival” (Belsky, 1999, p. 141). Littlefield and Rushton (1986) argued, therefore, that bereaved kin’s grief intensity would reflect the degree of genetic investment in the deceased and the deceased’s propagation potential. They found support for this proposal when investigating grief associated with a child death loss, which is biologically costly because the genes do not survive to be reproduced. For example, mothers, who have more genetic investment in each child due to their reproductive capacity being more limited than men’s, grieved significantly more intensely than fathers. In other research, kinship has been found to predict grief intensity, and bereaved parents have displayed more intense grief responses than adults experiencing other kin or spousal death losses (Burnett, Middleton, Raphael, & Martinek, 1997; Sanders, 1979-1980; Zisook & Lyons, 1988). Cleiren, Diekstra, Kerkhof, and van der Wal (1994) also found significant grief intensity differences among kin, “with parents (particularly mothers) . . . of the deceased being more strongly affected than adult
children, brothers, and widows” (p. 22). And Ringdal, Jordhoy, Ringdal, and Kaasa (2001) found that grief for close family members was stronger for female (i.e., more genetically invested) versus male participants and for younger (i.e., more reproductive potential) versus older family members.

Another perspective argues that “differences in severity of grief reactions . . . are likely to follow more accurately the closeness of personal relationships . . . than anything that directly results from the degree of genetic relatedness” (Archer, 1999, p. 158), with closeness perhaps being confounded with kinship because family members typically support and sustain daily existence. Consistent with this thinking, many thanatological researchers (Brent et al., 1992; Cleiren, 1993; McNeil, Silliman, & Swihart, 1991) have argued that closeness is relevant to grief intensity and must be assessed (Cleiren et al., 1994; McIntosh, 1993; Oltjenbruns, 1996; Swanson & Bennett, 1982-1983). In Bugen’s (1977) theory, centrality, “the closeness of the relationship between the mourner and the deceased” (p. 197), is a major predictor of grief intensity.

Rationale for the Study

In terms of hypotheses about adolescent grandparent or friend death loss, a sparse clinical and anecdotal literature suggests that the grief responses to grandparent death will vary according to the relationship’s closeness (Crenshaw, 1990; Raphel, 1983; Webb, 1993). Similarly, in the few adolescent friend loss studies (Brent et al., 1992; McNeil et al., 1991) closeness was significantly related to grief intensity. However, in other research, “the closeness of the student/peer relationship did not seem to predict the intensity or duration of mourning” (O’Brien, Goodenow, & Espin, 1991, p. 435). The paucity of research, the inconsistency in findings, and the lack of kin and friend death loss comparative studies sheds little light on the contribution of kinship or closeness as a salient predictor of grief intensity.

At the simplest level of an evolutionary saliency perspective, kin are important to the adolescent’s inclusive fitness, which in turn is relevant to reproductive success (Simpson, 1999). Because the likely index of relatedness to grandparents, aunts, and uncles is 25% (Archer, 1999), adolescents might display more grief for kin, whose genetic heritage they share and with whom they are linked in terms of evolutionary survival. In addition, due to grandparents no longer being at an age where they are reproductively valued, there may be greater grief intensity for aunts/uncles/cousins, who may still have reproductive value. If so, adolescents would exhibit less grief for friends, with whom they have no genetic heritage and no evolutionary survival link.

In contrast, from a closeness perspective, bereaved adolescents may display greater grief intensity based on their emotional closeness to the deceased, whether a grandparent, other kin, or a friend. Regarding closeness and kin death loss, we reasoned that adolescents may or may not have been close to a family member,
particularly if the deceased lived geographically far away and if interaction was more intermittent (e.g., twice a year) than continuous (e.g., daily, weekly). In addition, for a grandparent, grief may be attenuated because the person is at an age that seems old to the adolescent and so consistent with dying. More specifically, the adolescent may not perceive the self as close to or emotionally linked with someone at such a different phase of the life cycle. Nonetheless, if kinship is a primary predictor of grief intensity, then adolescent grief intensity would be higher for grandparents and kin death loss, whether or not closeness is high; but if closeness is the salient predictor, then grief intensity will be higher when closeness is higher, regardless of relationship category.

Regarding friend death loss, adolescents may have strong grief reactions because the friendship is close (Oltjenbruns, 1996; Toray & Oltjenbruns, 1996; Schacter, 1991-1992) and intense (Crenshaw, 1990; Davies, 1991; Raphael, 1983; Schacter, 1991-1992). Adolescent friendships have adaptive, developmental advantages linked to identity (Erikson, 1968; O’Brien et al., 1991; Oltjenbruns, 1996; Podell, 1989; Preto, 1999) as well as attachment (Allen & Land, 1999; Hazan & Zeifman, 1999) and affiliative functions (e.g., shared daily activities, caring, intimacy). For example, closeness may accrue in friendships as adolescents’ primary social support shifts from parents to friends in early and middle adolescence (Collins, 1997). In addition, developmental functions may culminate in adolescents’ friends being important, influential, and connected to the self (Berscheid, Snyder, & Omoto, 1989). Further, adolescent friend death may elicit a comparison with the deceased that, because of perceived similarity, may lead bereaved peers to confront their own vulnerability and mortality, thereby possibly increasing the emotional intensity of the loss (Crenshaw, 1990; Podell, 1989; Silverman, 2000; Smith, Lingle, & Brock, 1978-1979). These possibilities suggest an implicit closeness in adolescent relationships, which could elicit high grief intensity in response to friend death loss. If so, then grief may be more intense for friend death loss, if closeness is higher versus lower.

This study examined the relatedness of grief intensity and closeness in relation to death loss of family kin (i.e., grandparent and aunt/uncle/cousin) or friend. For hypothesis one (H1), consistent with Archer’s (1999) contention that closeness rather than kinship is salient to grief intensity, we expected that mean scores on grief intensity would be significantly higher for friend death loss than for grandparent or aunt/uncle/cousin death loss. The second hypothesis (H2) was that adolescents who reported high levels of emotional closeness would have significantly higher mean scores on grief intensity than those who reported lower levels of emotional closeness, regardless of relationship category (i.e., friend, grandparent, aunt/uncle/cousin). In addition, we asked a research question (RQ): Does the level of emotional closeness predict grief intensity above and beyond known biographical (i.e., age, sex, time since death, being with the deceased at the time of death, and suddenness of the death) predictors of grief intensity?
METHOD

Participants

Participants were 90 adolescents aged 14-18 years ($M = 15.8$, $SD = 1.10$) who had experienced a death loss within the previous two-year period. The sample, which was 77.8% female and 91.1% White, was recruited from one suburban and two rural high schools in the southeastern region of the United States. The findings presented here are one segment of a larger investigation. Approximately half of the participants were from intact families ($n = 46, 51.1\%$), while 14.4% ($n = 13$) were from families with divorced parents and 16.7% ($n = 15$) were from divorced families with both biological parents remarried. With regard to death loss, 50% ($n = 45$) of the sample reported on the death of a grandparent, 25.5% ($n = 23$) reported on the death of friend, 11.1% ($n = 10$) on the death of an aunt, 8.9% ($n = 8$) on an uncle, and 4.4% ($n = 4$) on a cousin. Time since death loss ranged from five days to two years ($M = 11.4$ months, $SD = 7.6$). The primary causes of death identified were cancer ($n = 24, 26.7\%$), old age ($n = 11, 12.2\%$), car accident ($n = 11, 12.2\%$), and heart attack ($n = 10, 11.1\%$). Data were also collected on several variables known to be associated with grief intensity including participant age and sex, time since death, adolescent presence at the time of death, and suddenness of the death.

Materials

Texas Revised Inventory of Grief (TRIG)

The TRIG (Fashingbauer, Zisook, & DeVaul, 1987) is a brief questionnaire designed to quantify the intensity of negative grief reactions. A modified version of the instrument was used in this research in order to make the items more appropriate for bereaved adolescents who experienced friend or grandparent death. Several items were revised to smooth readability and reduce repetition of phrases (e.g., “the person who died”), and one item (i.e., “No one will ever take the place in my life of the person who died”) was deleted because this item might not apply to friend-death loss. Three items were added by being more specific about the phrase “when I think of the person who died.” For example, “I still cry when I think of the person who died” became “I cry when I think about how this person used to be before his/her death” and “I cry when I think about how he/she could have been if not for his/her death.” In the current research the sample specific reliabilities on the TRIG subscale scores exceeded the original. Two experts have verified the content and acceptability of the present version of the TRIG (S. Zisook, personal communication, June 23, 2005; B. Hayslip, personal communication, July 10, 2005).

TRIG-Past, which is Part I of the measure, consists of eight items assessing grief-related feelings/behavior at the time of the death loss; a sample item is “After
this person died, I found it hard to get along with certain people.” TRIG-Present, Part II, consists of 15 items, such as “It is painful to recall memories of how he/she used to be.” which tap present grief-related feelings/behavior. Participants rated all items based on a 5-point Likert-type scale ranging from 5 = *completely true* to 1 = *completely false*. Higher scores indicate greater negative grief intensity. In terms of scores’ reliability, Fashingbauer et al. (1987) reported an alpha coefficient of .77 and a split-half reliability of .74 for TRIG-Past scores, with a coefficient alpha of .86 and a split-half reliability of .88 for TRIG-Present scores. For the current sample, Cronbach’s alphas for the scores were: TRIG-Past = .82 and TRIG-Present = .93.

Emotional Closeness

Although a comprehensive discussion is beyond the scope of this article, the measurement of closeness has been quite varied and fuzzy (Berscheid et al., 1989). Bereavement researchers have not agreed on a measure of closeness and have relied on either a single item measure (Grabowski & Frantz, 1992-1993; Park & Cohen, 1993; Reed & Greenwald, 1991; Russac, Steighner, & Canto, 2002; Swanson & Bennett, 1982-1983) or a multidimensional measure that includes related constructs such as intimacy (Cleiren, 1993). Because of such difficulties, a two-part measure was designed for this study to provide a concise, synthesized, single factor focus for emotional closeness. As defined in the present investigation, emotional closeness is the bereaved adolescent’s subjectively reported level of emotional openness, awareness, and understanding in the relationship with the deceased. Items were generated by two experts in closeness, as the term is used in death loss research and practice. Face validity was determined by a review of the items conducted by three other experts in the topic. The two parts of the measure were designed to be used both separately and together.

The *Scale of Emotional Closeness* (SEC), Part I, is a brief seven-item paper-and-pencil questionnaire (see Appendix A) that assesses the extent of subjectively perceived emotional closeness in the respondent and deceased’s relationship. Participants rated all items (e.g., “I kept my distance emotionally from this person”) on a 7-point scale from 7 = *very strongly agree* to 1 = *very strongly disagree*. Two items are reverse scored. Higher scores indicate greater emotional closeness. Sample-specific psychometrics calculated on the data indicated that Cronbach’s alpha reliability of the scores was .87, and the mean inter-item correlation was .47. The SEC correlated significantly with the TRIG-Past, $r = .43, p < .01$, and TRIG-Present, $r = .45, p < .01$, subscales, as is consistent with expectations that the scales measure separate, highly related variables.

The *Emotional Closeness Continuum* (ECC; Appendix B), Part II, asks respondents to “make a vertical slash mark on the line below to indicate your level of closeness with the person who died.” Following an example of a neutral response, the question: “How aware was this person of your most personal
feelings?” precedes the 100 millimeter long horizontal line. This line is anchored by “Completely unaware of my most personal feelings (−)” on the left and “Completely aware of my most personal feelings (+)” on the right, with a zero in the center. A metric ruler is used to determine scores, which range from 0 to 100. Higher scores indicate greater emotional closeness. Pearson correlations calculated on the sample data revealed that the ECC was significantly related to the TRIG-Past, $r = .54, p < .01$, and the TRIG-Present, $r = .47, p < .01$, as was expected for different but associated constructs.

With regard to the SEC and ECC being used together with a total score, the ECC correlated with the SEC at $r = .80, p < .01$, as is consistent with the two measuring a similar construct. A factor analysis was conducted on the sample’s data using the seven items of the SEC and the one score from the ECC. The principal component extraction procedure using varimax rotation resulted in a one-factor solution that accounted for 60.7% of the variance. Factor loadings ranged from .60 to .86.

Procedure

The procedures for data collection in particular rural and urban schools varied because of school district specifications. In school I, after a brief description of the study, students who met research criteria raised their hands and took a packet (i.e., parental consent form, youth assent form, two separate self-addressed stamped envelopes for consent forms, and questionnaires). The response rate (i.e., packets taken versus packets returned) from this school was 11%. In school II, all students received packets prior to the project description and then left the packet at the door after class if they did not meet the participant criteria or were not interested in completing the packet. The response rate was 16%. In school III, students were presented with consent forms during the first visit by the researcher and asked to return them the following school day if they were able and willing to complete the packet. Students then completed the questionnaires during class time the next day. The response rate was 26%. An ANOVA indicated that there were no significant mean grief intensity differences due to the varied procedure, $F(4, 174) = .63, p > .05$.

RESULTS

To examine H1 that adolescents who experienced a friend death loss would report higher levels of grief intensity than those experiencing a family kinship death loss (i.e., grandparent or aunt/uncle/cousin), a one-way MANOVA using relationship category (i.e., friend, grandparent, aunt/uncle/cousin death) as the independent variable was performed on the TRIG-Past and TRIG-Present subscales (see Table 1). The multivariate main effect was significant, $F(4, 174) = 2.35, p < .05$, $\chi^2 = .05$, as was the univariate effect for TRIG-Present,
F(2, 87) = 3.49, p < .05, \(\chi^2 = .07 \). Scheffe post hoc analyses indicated that adolescents reported higher present grief intensity (i.e., TRIG-Present) for friend death loss than for grandparent death loss. Because it could be that adolescent experience of friend death loss was more recent, a post hoc analysis using time since death as a covariate was calculated. The omnibus finding was relatively unchanged, \(F(4, 172) = 2.45, p < .05, \chi^2 = .05 \), and the analysis did not significantly alter the TRIG-Present univariate effect, \(F(2, 86) = 3.37, p < .05, \chi^2 = .07 \). In both analyses, the univariate effect for TRIG-Past, \(F(2, 87) = 1.65, p > .05, \chi^2 = .04 \), and \(F(2, 86) = 1.84, p > .05, \chi^2 = .04 \), was not significant.

Two procedures were used to test H2 that closeness would account for grief intensity over and above relationship category. In the first procedure, the total score from the SEC/ECC was used as a covariate, along with time since death, in the MANOVA with relationship category as the independent variable and grief intensity as the dependent variable. The results revealed that the omnibus effect was no longer present, \(F(4, 168) = 1.38, p > .05, \chi^2 = .03 \); there were no significant mean differences in grief intensity.

Because failure to reject the null hypothesis does not constitute support for the hypothesis, a second procedure was performed. Emotional closeness was dichotomized into a categorical variable. Participants’ total scores on the SEC/ECC were divided based on a mean split into high emotional closeness and low emotional closeness, with two participants excluded because of failing to complete one or both of the closeness measures. A 2 × 3 MANOVA, using level of emotional closeness (i.e., high, low) and relationship category (i.e., friend, grandparent, aunt/uncle/cousin) as the independent variables and time since death as the covariate, was performed on the TRIG-Past and TRIG-Present subscales (see Table 2). The main effect for level of emotional closeness was significant, \(F(2, 81) = 10.10, p < .001, \chi^2 = .20 \). Univariate analyses indicated that those in the high emotional closeness group scored significantly higher on both the TRIG-Past (\(M = 26.23; SD = .92 \)) and TRIG-Present (\(M = 54.91; SD = 1.95 \)) than those in the low emotional closeness group (\(M = 20.20; SD = 1.02 \) for Past;
To analyze RQ1, whether emotional closeness adds to the prediction of grief intensity above and beyond the biographical predictor variables, two hierarchal multiple regressions (n = 84) were computed with age, sex, time since death, presence at death, and suddenness of death entered together at Step 1 and the total SEC/ECC score entered at Step 2 (see Tables 3 and 4). For TRIG-Past, R was significantly different from zero at the end of each step. For step 1, \(R^2 = .24 \) (Adjusted \(R^2 = .19 \)), \(F(5, 78) = 4.88, p < .001 \). Beta weights indicated that participant age, time since death, and presence at death were significant contributors to TRIG-Past. For step 2, with all variables in the equation, the equation was significant, \(R = .66, F(6, 77) = 10.03, p < .001 \), with \(\Delta R^2 = .20 \) indicating that emotional closeness explained significant additional variance in TRIG-Past, \(R^2 = .44 \) (adjusted \(R^2 = .40 \)), \(F_{inc}(1, 77) = 27.50, p < .001 \). After Step 2, time since death, presence at the time of death, and emotional closeness contributed significantly to the prediction of TRIG-Past.

For TRIG-Present, R was significantly different from zero at the end of each step. After step 1, with participant age, sex, time since death, presence at the time of death, and suddenness of death in the equation, \(R^2 = .21 \) (Adjusted \(R^2 = .16 \)), \(F(5, 78) = 4.24, p < .01 \). Participant age and time since death contributed
<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sexa</td>
<td></td>
<td>.15</td>
<td>.09</td>
<td>.12</td>
<td>.16</td>
<td>.16</td>
<td>.27*</td>
<td></td>
</tr>
<tr>
<td>3. Time since death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Presence at deathb</td>
<td></td>
<td></td>
<td></td>
<td>.01</td>
<td>.17</td>
<td>.10</td>
<td>.26*</td>
<td></td>
</tr>
<tr>
<td>5. Suddenness of deathc</td>
<td></td>
<td></td>
<td>.08</td>
<td></td>
<td></td>
<td>.01</td>
<td>.24*</td>
<td>.15</td>
</tr>
<tr>
<td>6. Emotional closeness</td>
<td></td>
<td>.01</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. TRIG-Past</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.67**</td>
<td></td>
</tr>
<tr>
<td>8. TRIG-Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a0 = male and 1 = female
b0 = not present at death and 1 = present at death
c0 = not sudden and 2 = sudden

*p < .05. **p < .01. ***p < .001.

Table 4. Summary of Hierarchical Regression Analysis for Variables Predicting TRIG-Past and TRIG-Present (N = 84)

<table>
<thead>
<tr>
<th>Variable</th>
<th>TRIG-Past</th>
<th></th>
<th>TRIG-Present</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>β</td>
<td>sr2</td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-1.38</td>
<td>.62</td>
<td>-.23</td>
<td>.05*</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-.44</td>
<td>1.57</td>
<td>-.03</td>
<td>0</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.00</td>
<td>.32</td>
<td>.10**</td>
</tr>
<tr>
<td>Presence at death</td>
<td>7.14</td>
<td>2.19</td>
<td>.32</td>
<td>.10**</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>.57</td>
<td>1.31</td>
<td>.04</td>
<td>.00</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-1.05</td>
<td>.54</td>
<td>-.18</td>
<td>.03</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-1.48</td>
<td>1.37</td>
<td>-.10</td>
<td>0</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.00</td>
<td>.32</td>
<td>.10***</td>
</tr>
<tr>
<td>Presence at death</td>
<td>4.54</td>
<td>1.96</td>
<td>.21</td>
<td>.04*</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>.49</td>
<td>1.13</td>
<td>.04</td>
<td>.00</td>
</tr>
<tr>
<td>Emotional closeness</td>
<td>.09</td>
<td>.02</td>
<td>.48</td>
<td>.20***</td>
</tr>
</tbody>
</table>

Note: TRIG-Past $R^2 = .24$ for Step 1 ($p < .001$); $\Delta R^2 = .20$ for Step 2 ($p < .001$).
TRIG-Present $R^2 = .21$ for Step 1 ($p < .01$); $\Delta R^2 = .17$ for Step 2 ($p < .001$).
*p < .05. **p < .01. ***p < .001.
significantly to the prediction of TRIG-Present. For step 2, with all variables included, the equation was significant, $R = .62$, $F(6, 77) = 7.83$, $p < .001$, with $\Delta R^2 = .17$ indicating that emotional closeness explained significant additional variance in TRIG-Present, $R^2 = .38$ (adjusted $R^2 = .33$), $F_{inc}(1, 77) = 20.47$, $p < .001$. Participant age, time since death, and emotional closeness were significant contributors to the prediction of TRIG-Present.

Post Hoc Analyses

Because the regression equations were significant, we computed hierarchal multiple regressions, predicting TRIG-Past and TRIG-Present, for each relationship category (i.e., friend, grandparent, aunt/uncle/cousin), in order to provide the most information for future research. Again, age, sex, time since death, presence at death, and suddenness of death were entered together at Step 1, and emotional closeness was entered at step 2 (see Table 5). For friend ($n = 23$), the equations for TRIG-Past were not significant at step 1 $F(5, 17) = .98$, $p > .05$ or step 2, $F(6, 16) = 2.36$, $p > .05$. However, as indicated in Table 5, $\Delta R^2 = .25$ emotional closeness added to the equation was significant, $R^2 = .47$ (adjusted $R^2 = .27$), $F_{inc}(1, 16) = 7.40$, $p < .05$. The TRIG-Present equations were also not significant at step 1, ($n = 23$), $F(5, 17) = .88$, $p > .05$, or step 2, $F(6, 16) = 1.08$, $p > .05$, nor was the incremental change, ΔR^2 for emotional closeness. Nonetheless, emotional closeness explained additional variance, 25% for TRIG-Past and 8% for the TRIG-Present.

In contrast, the equations for grandparent ($n = 42$) on TRIG-Past were significant at step 1, $F(5, 36) = 2.67$, $p < .05$, and step 2, $F(6, 35) = 4.77$, $p < .001$. Time since death was a significant predictor at step 1; for step 2, time since death and emotional closeness were significant predictors. For TRIG-Present, the equation for step 1 was not significant $F(5, 36) = 2.31$, $p > .05$, but the equation for step 2 was significant, $F(6, 35) = 4.15$, $p < .01$. Participant age and emotional closeness significantly predicted TRIG-Present. Emotional closeness explained additional variance, 18% for TRIG-past and 17% for TRIG-present.

For aunt/uncle/cousin ($n = 19$), the TRIG-Past equations were significant at step 1, $F(5, 13) = 4.53$, $p < .05$ and step 2, $F(6, 12) = 4.39$, $p < .05$, with presence at death being the only significant predictor for each. The equations for TRIG-Present were also significant at step 1, $F(5, 13) = 46.23$, $p < .01$ and step 2 $F(5, 13) = 4.53$, $p < .05$, with age, time since death, and presence at death as significant predictors.

DISCUSSION

The results of this study generally supported the hypotheses. For H1, adolescents reported significantly higher present grief intensity for friend than for grandparent death loss. For H2, based on the two procedures, adolescents in the
Table 5. Summary of Hierarchical Regression Analysis for Variables Predicting TRIG-Past and TRIG-Present by Relationship Category

<table>
<thead>
<tr>
<th>Variable</th>
<th>TRIG-Past</th>
<th></th>
<th></th>
<th>TRIG-Present</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE B</td>
<td>β</td>
<td>sr²</td>
<td>B</td>
<td>SE B</td>
</tr>
<tr>
<td>Friend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-1.32</td>
<td>1.80</td>
<td>-1.18</td>
<td>.02</td>
<td>-3.92</td>
<td>2.97</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-2.12</td>
<td>4.71</td>
<td>-1.11</td>
<td>.01</td>
<td>4.49</td>
<td>7.80</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.01</td>
<td>.24</td>
<td>.05</td>
<td>.00</td>
<td>.01</td>
</tr>
<tr>
<td>Presence at death</td>
<td>3.10</td>
<td>5.12</td>
<td>.13</td>
<td>.02</td>
<td>6.71</td>
<td>8.47</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>5.23</td>
<td>3.61</td>
<td>.33</td>
<td>.10</td>
<td>-5.3</td>
<td>5.97</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-.01</td>
<td>1.60</td>
<td>-.01</td>
<td>.00</td>
<td>-2.75</td>
<td>3.03</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-2.64</td>
<td>4.02</td>
<td>-1.14</td>
<td>.01</td>
<td>4.00</td>
<td>7.61</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.01</td>
<td>.33</td>
<td>.09</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Presence at death</td>
<td>1.12</td>
<td>4.42</td>
<td>.05</td>
<td>.00</td>
<td>4.84</td>
<td>8.38</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>5.48</td>
<td>3.08</td>
<td>.35</td>
<td>.11</td>
<td>-2.29</td>
<td>5.83</td>
</tr>
<tr>
<td>Emotional closeness</td>
<td>.11</td>
<td>.04</td>
<td>.55</td>
<td>.25*</td>
<td>.10</td>
<td>.08</td>
</tr>
<tr>
<td>Grandparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-1.06</td>
<td>.80</td>
<td>-.21</td>
<td>.04</td>
<td>-3.23</td>
<td>1.71</td>
</tr>
<tr>
<td>Participant sex</td>
<td>1.03</td>
<td>2.17</td>
<td>.08</td>
<td>.00</td>
<td>6.60</td>
<td>4.63</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.00</td>
<td>.41</td>
<td>.16**</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Presence at death</td>
<td>4.05</td>
<td>4.26</td>
<td>.14</td>
<td>.02</td>
<td>-.78</td>
<td>9.09</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>-1.42</td>
<td>2.01</td>
<td>-.11</td>
<td>.01</td>
<td>-1.89</td>
<td>4.28</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-1.05</td>
<td>.71</td>
<td>-.21</td>
<td>.03</td>
<td>-3.21</td>
<td>1.53</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-.82</td>
<td>2.00</td>
<td>-.06</td>
<td>.00</td>
<td>2.80</td>
<td>4.29</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.00</td>
<td>.40</td>
<td>.15**</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Presence at death</td>
<td>.68</td>
<td>3.89</td>
<td>.02</td>
<td>.00</td>
<td>-.77</td>
<td>8.38</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>-1.29</td>
<td>1.77</td>
<td>-.10</td>
<td>.01</td>
<td>-1.63</td>
<td>3.81</td>
</tr>
<tr>
<td>Emotional closeness</td>
<td>.08</td>
<td>.03</td>
<td>.46</td>
<td>.18**</td>
<td>.18</td>
<td>.06</td>
</tr>
<tr>
<td>Aunt/Uncle/Cousin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-4.01</td>
<td>1.91</td>
<td>-.55</td>
<td>.13</td>
<td>-18.07</td>
<td>4.10</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-2.86</td>
<td>3.12</td>
<td>-.18</td>
<td>.02</td>
<td>4.01</td>
<td>6.71</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.01</td>
<td>.54</td>
<td>.12</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>Presence at death</td>
<td>11.42</td>
<td>2.82</td>
<td>.71</td>
<td>.47***</td>
<td>18.63</td>
<td>6.06</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>-1.11</td>
<td>2.53</td>
<td>-.08</td>
<td>.01</td>
<td>4.36</td>
<td>5.45</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant age</td>
<td>-3.10</td>
<td>1.95</td>
<td>-.43</td>
<td>.07</td>
<td>-16.89</td>
<td>4.40</td>
</tr>
<tr>
<td>Participant sex</td>
<td>-1.89</td>
<td>3.09</td>
<td>-.12</td>
<td>.01</td>
<td>5.27</td>
<td>6.98</td>
</tr>
<tr>
<td>Time since death</td>
<td>.01</td>
<td>.01</td>
<td>.42</td>
<td>.07</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>Presence at death</td>
<td>9.31</td>
<td>3.10</td>
<td>.58</td>
<td>.23**</td>
<td>15.87</td>
<td>7.00</td>
</tr>
<tr>
<td>Suddenness of death</td>
<td>.00</td>
<td>2.56</td>
<td>.00</td>
<td>.00</td>
<td>5.81</td>
<td>5.79</td>
</tr>
<tr>
<td>Emotional closeness</td>
<td>.01</td>
<td>.04</td>
<td>.29</td>
<td>.05</td>
<td>.08</td>
<td>.10</td>
</tr>
</tbody>
</table>

Note: TRIG-Past $R^2 = .24$ for Step 1 ($p < .001$); $\Delta R^2 = .20$ for Step 2 ($p < .001$).
TRIG-Present $R^2 = .21$ for Step 1 ($p < .01$); $\Delta R^2 = .17$ for Step 2 ($p < .001$).
*p < .05. **p < .01. ***p < .001.
high closeness group reported significantly higher past and present grief intensity, regardless of relationship category. Finally, for the RQ, emotional closeness added significantly to the prediction of past and present grief intensity.

The finding of higher grief intensity for friend versus grandparent death seems inconsistent with Littlefield and Rushton’s (1986) proposition and the concept of evolutionary salience being central in predicting grief intensity. However, grandparents’ age must also be considered when interpreting these results. Because grandparents are likely no longer of reproductive age, they may not be evolutionary salient to the adolescent at least in terms of self-report and awareness, despite the index of relatedness. Besides, it is the adolescent and not the grandparent who is the one who is reproductively valued. On the other hand, adolescent friendships might be characterized by evolutionary mutual benefit (see Archer, 1999), for instance, in terms of developmental tasks. If so, then an evolutionary-based grief approach would be in favor of adolescent friendships, given that grandparents are no longer reproductively valued and that the social environment is characterized by relatives living at a distance rather than functioning together in small groups (Simpson, 1999). However, this alternate interpretation is highly speculative, and we suspect that closeness is a more parsimonious variable, though future research could investigate this speculation. In addition, because of the age difference between deceased friends versus grandparents, it could be that current grief is more intense for friend death loss because this loss is more often perceived as preventable, considered a disenfranchised experience (Oltjenbruns, 1996; Ringler & Hayden, 2000; Sklar & Hartley, 1990), has an off-time quality, and is likely somehow violent (Ringler & Hayden, 2000). Or it could be that present grief is higher for friend death loss because there are reminders of the person in daily life (e.g., at school), or interactions and functions (e.g., support) associated with the person are still missing.

The finding of significant mean differences in past and present grief for higher versus lower closeness, regardless of relationship category, is consistent with Archer’s (1999) premise that closeness, not kinship, is the salient indicator of grief intensity. This finding is also consistent with Bugen’s (1977) inclusion of centrality in predicting grief intensity. Nonetheless, future research needs to determine if this finding remains for other relationship categories (e.g., primary attachments such as parents or committed romantic partners). In addition, comparisons of bereaved adolescents should examine (a) groupings of friend death loss (e.g., romantic, best friend, friend), (b) groupings of kin death loss (i.e., parents/siblings, who share 50% relatedness; grandparents/aunts/uncles, who share 25% relatedness; and first cousins, who share 12.5% relatedness (Archer, 1999; Simpson, 1999), and (c) groupings of age-related death loss (e.g., similarly aged, older, and younger individuals). Such research, using path analysis or structural equation modeling, would allow for a more refined evaluation of evolutionary based predictions. It could be, for instance, that, in current U.S.
society, closeness is a proximal factor mediating the more distal evolutionary salience of kinship.

For the research question, emotional closeness explained an additional 20% and 17% of the variance in past and present grief intensity, respectively. This finding is consistent with finding higher past and present grief differences in the high versus low closeness group, and again indicates that emotional closeness needs to be considered when examining adolescent death losses. Nonetheless, we are leery of interpreting the post hoc, relationship category regression analyses because of the low sample sizes. The primary purpose of these analyses was to provide researchers with information (e.g., the semipartial correlations) to suggest future research paths. Nonetheless, we note that emotional closeness was a positive predictor of TRIG-Past for the friend and grandparent death loss groups.

Although emotional closeness was the primary focus of the present investigation, it is interesting that time since the death predicted TRIG-Past in several significant regression analyses. The positive relationship between time since death and past grief intensity is perhaps counterintuitive, but it is aligned with previous suggestions that time since death is not a straightforward predictor of grief intensity for adolescents (Fleming & Balmer, 1996). The current analyses suggest that the further adolescents are from the death loss, the greater they perceive their past grief intensity to have been. It could be that: a) adolescents idealize in their retrospective accounts; b) as they move beyond the initial grief, they realize how upset they were initially, and appraise and report the past grief more accurately; and c) the memory of the past grief is stronger in comparison to present grief. Future longitudinal research would be useful to examine the meaning of this finding, and whether it was unique to the present sample or is a more generalizable result.

Limitations and Future Research

It is important to note limitations of the research. To begin with, the current sample was relatively homogenous with regard to race, sex, religious affiliation, and geographic location, which made it difficult to examine the extent to which these distinctions might affect the generalizability of findings. Likewise, although the sample is consistent with previous grief-related research, the predominance of females decreased the power and so did not truly allow for an examination of sex differences, which may be relevant to evaluating evolutionary based and closeness hypotheses (Archer, 1999; Marwit & Klass, 1994-1995; Oltjenbruns, 1996; Silverman, 2000). In addition, a larger N would allow researchers to group discrete types of kin (e.g., first cousins), whereas this research, due to the sample size, grouped kin according to the unit that typically lives under the same roof (e.g., aunt/uncle/cousin) in the cultural group that was dominant in the sample. Cultural and individual differences are important for scholars to consider in future research. For example, some adolescents (e.g.,
poor or marginalized groups) assume adult responsibilities at a much earlier age than might be likely for this predominately White sample (Preto, 1999). It is not clear how school and work responsibilities, associated differences in available caregiving resources in the family, or cultural collectivism would influence the relatedness of grief intensity, emotional closeness, and relationship category.

A second important limitation concerns the measurement of closeness. The SEC/ECC was designed for this study. These descriptive items did have strong internal consistency, but it would be useful for the SEC/ECC to be further investigated in a validity study, one which might compare the SEC/ECC to the other approaches to measuring emotional closeness. There are different theoretical frameworks for understanding closeness, and these varied frameworks may lead to unrelated research questions and disparate findings (Berscheid & Reis, 1998). In this study, closeness referred to an individual’s subjective impression of the level of emotional closeness that existed in his or her relationship with the deceased. A validity study could help determine convergence of as well as distinctions in meanings and measures. In the meantime, based on the strong sample specific psychometrics reported here, future research could explore the use of the SEC/ECC with additional populations of adolescents and perhaps adults. Finally, it could be that adolescents’ perceptions of their emotional closeness may change as a function of the death itself. Perhaps adolescents perceive themselves as emotionally closer to the deceased the day after the death than they would have the day before the death. A prospective study would provide useful information for tackling this question.

In future research, it might be beneficial for researchers to consider attachment, when examining closeness in adolescent friend and kin relationships. Because theory and previous research suggest that attachment quality is relevant to grief (Harris, 1991; Shaver & Tancredy, 2001; Stroebe & Stroebe, 1993; Wayment & Vierthaler, 2002), investigating closeness along with attachment and affiliative bonds (Weiss, 2001) can contribute to the knowledge base. In doing so, researchers need to assess: a) whether the adolescent has an attachment or an affiliative bond to the deceased (Hazan, Gur-Yaish, & Campa, 2004), possibly by using the WHOTO (Hazan & Zeifman, 1994); b) the quality of the attachment relationship (Ainsworth, 1988); and c) whether the deceased is a highly preferred or a subsidiary attachment (i.e., what is the hierarchal placement of the deceased among the adolescent’s attachments) (Bowlby, 1969; Trinke & Bartholomew, 1997). Because most adolescents are in romantic relationships (Carver, Joyner, & Udry, 2003), which may be attachment relationships with emotional support and sexual development functions (Allen & Land, 1999; Furman & Shaffer, 2003; Tracy, Shaver, Albino, & Cooper, 2003), research on closeness and grief intensity should include several kinds peer relationships (e.g., sexual and non-sexual romantic relationships, “best” friends, friends).

Finally, because of criticisms of the TRIG (Neimeyer & Hogan, 2001), follow up research might use other, more sophisticated measures of bereavement (e.g.,
Hogan Inventory of Bereavement, Core Bereavement Items). A longitudinal design would also be worthwhile.

Practical Application

According to these results, emotional closeness to the deceased needs to be actually used in an applied and practical sense when working with individual adolescents on a day-to-day basis. After asking about the formal relationship with the deceased (e.g., friend, grandparent, aunt/uncle/cousin), teachers, counselors, after-care providers, and others who work with adolescents need to go a step further by intentionally and specifically asking bereaved adolescents, “How close were you to ____?” It is simply not enough to know if a grandparent or a friend has died. Although many grandparents maintain households for their grandchildren (Casper & Bryson, 1998), especially in some ethnic minority groups, other grandparent-grandchild relationships may not be close due to distance and limited contact. The adolescent might be much closer to a friend. Or the distance and limited contact may be overcome by phone conversations or webcam visits with a grandparent. The present findings suggest that those working with bereaved adolescents can avoid misguided interventions and have an accurate sense of the experienced grief intensity by asking specifically about closeness.

Practitioners who work in or interface with schools are also likely to find value in the present findings. These individuals, as an advocate for bereaved adolescents, can emphasize and educate others about the relatedness of closeness and grief intensity. Another basic application of these emotional closeness findings relates to policies regarding the allowable number of school absences following death losses. Teachers and counselors may advocate a flexible policy that considers the adolescent’s perceived emotional closeness to the deceased, rather than an allotted number of absences based on and associated with the formal relationship category (e.g., two weeks for parent death loss, two days for grandparent death loss, no days for friend death loss).

This research contributes to the adolescent death loss and grief intensity literature because it examined adolescents’ common death losses, investigated grandparent loss and closeness, and compared kin and friend death loss. The results suggest that emotional closeness is a useful predictor of grief intensity, at least for adolescent common death losses. Although this finding may seem obvious, it is imperative that researchers pursue such investigations so that bereavement services are based on empirical evidence. In addition, different levels of analysis (e.g., general evolution theory, mid-level theories) lead to multiple predictions (Simpson, 1999); so additional research is warranted and needed. Nonetheless, the current study sets the stage for more complex research examining relationship category and closeness in adolescent death losses.
APPENDIX A
Scale of Emotional Closeness (SEC)

The level of closeness we feel to others differs from person to person and over time. Please think about your relationship with the important person who died while answering the following questions. Using the following scale, circle the number that corresponds to how much you agree with each statement.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>very strongly agree</td>
<td>neither agree</td>
<td>very strongly disagree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. I felt I could share my most intimate feelings with this person. 7 6 5 4 3 2 1
2. I kept my distance emotionally from this person. 7 6 5 4 3 2 1
3. It was very easy to talk with this person. 7 6 5 4 3 2 1
4. I felt close to this person. 7 6 5 4 3 2 1
5. It was difficult to talk with this person. 7 6 5 4 3 2 1
6. This person understood me. 7 6 5 4 3 2 1
7. This person shared his/her most personal thoughts with me. 7 6 5 4 3 2 1

APPENDIX B
Emotional Closeness Continuum

Please make a vertical slash mark on the line below to indicate your level of closeness with the person who died.

How aware was this person of your most personal feelings?

Completely unaware of my most personal feelings

For example, placing a mark at this point on the line would indicate that you are unsure.

Completely aware of my most personal feelings
ACKNOWLEDGMENTS

The authors wish to thank colleagues P. Nora Reilly, Deborah Bennett, Marilyn Haring, and Deborah Taub for feedback on earlier versions of the manuscript.

REFERENCES

Direct reprint requests to:
Heather L. Servaty-Seib
Counseling & Development
Department of Educational Studies
Purdue University
West Lafayette, IN 47907
e-mail: servaty@purdue.edu or pistole@purdue.edu
Copyright of Omega: Journal of Death & Dying is the property of Baywood Publishing Company, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.